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Well-known theorems of Melan and Koiter (see, for example, 
[1]) are of fundamental importance in shakedown theory; their com- 
bined use permits in principle a two-sided estimate of the shakedown 
loads. It should be pointed out that as yet only Melan' s theorem has 
been used in practice. 

Variable conditions due to the presence of nonsteady temperature 
fields are of considerable interest in several branches of technology. 
The shakedown of nonuniformly heated bodies and the corresponding 
generalization of Melan' s theorem were considered in [2-6]  and other 
papers. In the present investigation we give an analogous generaliza- 
tion of Koitur's theorem and consider some possible applications of an 
approximate analysis based on this theorem. 

1. We assume that an elastic-perfectly plastic body is subjected 
to the action of several loads, varying in a certain range, and a non- 
steady temperature e (x, y, z, t), which varies at each point between 
certain specific values. We denote by oij e (O, eij e (0  the (fictitious) 
the.rmoelastic solution corresponding to ideally elastic behavior. The 
values aij e (t), sU e (t) are linked by the relation 

e ' - -  ' (1 .1)  

where Cijhk is the elasticity tensor (Cijhk = Chkij), and 6ij is the 
Kronecker symbol. 

The true (elastoplastic) stresses and strains at any moment of 
t ime can be represented by 

e a~i = ~t~ + Ptj, e~j = e~i + % �9 (1 .2)  

Here Pij' eij are the (instantaneous) residual stresses and strains. 
The total strain eij can also be represented in the form 

,~ = ,,~ + e,; (,,; = c.t,~,,,,,~, + %=o).  (1. s) 

Here s i j ' ,  eij" are the elastic and plastic components, respec- 
tively. 

By combining relations (1 .1)-(1 .3)  it is easy to see that the 
residual stresses and strains satisfy the relation 

e 0 = Ct~ht, Phl~ "Jr" et~. (1.4) 

All the introduced stress and strain tensors are slowly changing 
functions of t ime.  Stresses oij and otj e are statically possible fields 
balanced by instantaneous external surface and volume loads; the 
residual stresses Pij form a self-equilllxatud field, while strains 
$ij, r e '  eij are kinematically possible, i, e . ,  they are compatible, 
the corresponding displacement fields satisfying the assumed kinematic 
boundary conditions at the surface; ~ finally, the components r and 
r are not compatible. 

The following basic inequality [1] applies for plastic flow (local 
maximum principle): 

(~l# - -  %0 e~.~ > .0  (1 .5 )  

where oij* is an arbitrary state of stress inside the yield surface (the 
dot denotes differentiation with respect to t ime).  

Along with the actual plastic strains r (t) we shall also con- 
sider a cer}ain arbitrary field of plastic strains sij~' (t), which we 

shall call "admissible" if the plastic strain increments 

T 

o.6) 
0 

calculated for a certain interval of t ime T, form a kinematically : 
possible field. After setting eij" =eij ~ in (1.4), we find a certain 
(unique) distribution of "associated" residual stresses Pij0' residual 
strains eij 0 and reddual displacements uij 0. i It should be noted 
that, owing to the condition (1.6) and relation (I.4), at the end of 
a cycle the associated residual stresses return to the values which 
they had at the beginning of the cycle 

pt~. h=o = p~i. h=r  . (1.v) 
2, The Koitur theorem for a nonuniformly heated body can be 

formulated as follows: no shakedown takes place if an admissible 
cycle of plastic strain rates eij~" (0 and a certain program of load 
and temperature variation (within given limits) can be found for 
which 

T T 

0 ~ ~J 0 

On the other hand, the system shakes down, if for all admissible 
cycles of plastic strain rates and ali possible variations of load and 
temperature (within given limits), relation (2.1) is satisfied with the 
inequality sign reversed. In (2.1) W (r denotes the rate of 
plastic dissipation of energy at admissible strain rates eij0" it), 

In order to prove the first part of the theorem, we assume, fol- 
lowing [1], that although there exists a cycle which satisfies (2.17 
shakedown is observed, Then, according to Melan's theorem for a 
nonunlformly heated body [2, 4], it is possible to find a steady field 
of residual stresses Pij ~ such that the sun 

@ o ,$ 
% q- p~# = at# (2.2)  

nowhere exceeds the yield stress, According to the principle of virtual 
work 

v p 

Since, according to (1.4), 

,,;, = + 4 : .  (2. 

we can represent (using (2.2)) the right-hand side of (2.8) in the fol- 
lowing form: 

I § S § S~ .(2. 

The first term of the right-hand side can be transformed by means 
o f ( l ,  1) as follows: 

i~Ci}htphk, dv = v 

Me shall consider only the case when the kinematic boundary 
conditions (if these conditions are given) correspond to the vanishing 
of certain components of the displacement vector, 

tin order actually to connect these fields it is obviously necessary 
to solve the elastic boundaz 7 problem for zero loads and given (zero) 
displacements at the surface in the presence of  "superposed" strains 
P ij".  
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Because of the principle of virtual work the first term in the 
right-hand side is zero. If we now integrate relation (2.5) with 

respect to time, from t = 0 to t = T, because of(1.2) the second 
term of the right-hand side of (2.g) vanishes. As a result, we obtain 
the relation 

T T 

S dt {!  Fiui"dv § I Piui~ § f ct0Pr176 = s dt S~';'i~'idv" (2.7) 
0 p u 0 v 

The contradiction between (2.1) and (2.7), which can be easily 
detected by means of the inequality (1.5), proves the first part of the 
theorem. The second part of the theorem is proved by means of an 
analogous generalization of Koiter's proof. 

3. The following results should be noted: steady temperature 
fields have no effect on adaptability. In fact, if O is independent of 
time, then the temperature term in relation (~. 1) 

T 

dv 
o v 

and vanishes owing to the cyclicity condition (1.7). It is obvious 
that adaptation is also independent of the initial stresses or, generally, 
of any self-equilibrated internal steady stresses. 

4. As emphasized in [2], shakedown calculations based on both 
Melan's theorem and the theorem of Koiter involve a very detailed 
elastic analysis, which makes the solution much more difficult than, 
for example, in the case of a similar use of the theorems of limit 
analysis. In particular, if the Koiter theorem is used, an original 
elastic problem arises in connection with the need to construct, on 
the basis of (2.4), the residual stresses and strains associated with a 
specific plastic cycle ~'"iJ0 (t). In order to eliminate this difficulty 
we suggest the following technique. We specify at the beginning the 
kinematicatly possible field of residual rates u'[0 and the statically 
possible field of residual stress rates Pij'0" This automatically deter- 
mines the corresponding admissible cycle of plastic strain rates 

siJ"0 (t) which, according to (2.4) have the following form: 

~,;: = v .  ( . , . , ;  § -~o. ;) - % ~ & .  (4.  ~) 

It is obvious that the obtained distributions of ui0, Pijo, sij ~ satisfy 
the necessary conditions and can be used for calculations from (2.1). 

Fig. 1 

5. In order to illustrate the described method we shall consider 
the following problem. A thin plate of any plan shape is clamped 
along the edges and subjected to the variable temperature field 

0 = �9 (t) + ~/-~ ~' ( t ) ,  (5 .1)  

where h is the comtant thickness of the plate, z is measured from the 
middle surface along the normal, and functions q' (t) and * (t) can 
vary arbitrarily and independently of each other in the range 

-- ~ ~< �9 (t) N< ~ ,  ~ ~F~ ~< ~F (t) ~ ~ t  �9 (5 .2)  

Without loss of generality, we can, according to the corollary of 
Section 3, restrict ourselves to the consideration of a somewhat 
simpler case 

0 < r (t) ~ ~o. 0 ..< ~F (t) N< ~o, (5. ,'9 

which can be reduced to the former case by superimposing a certain 
steady temperature field. We begin by selecting the statically pos- 
sible associated residual stresses, which we take in the following form: 

p s  = . . :  = - ~ _~ ~ ~ - ( t ) .  (,).  (~. 4) 

where (Fig. I) 

~'=0 for OGt<T, ~'=0 for %T<t~<T§ 

~'=--I forT<t<%T, W=I for z+V~T<tGT, (5.5) 

and also 

(z) = I for z*Gz<V2ho 
s(z) = 0 for --'/oh~zGz*. (5.6) 

/ Z Yo 

Fig. 2 

Here z* and r are arbitrary contacts, which satisfy the conditions 

--b'2h ~ z* -.< li2h, 0 ~ "t ~ X/2T. (5.7) 

The simplest kinematically possible field of velocities ui" 0 vanish- 
ing at the edges is 

u~: = %: = 0. 

The residual strain rates are also identically zero and, conse- 
quently, according to (4.1) (for an isotropic material) we obtain 

%"= %." = v : ( 0  s ( 0 .  ( ~ . 8 )  

It now remains to specify the cycle of temperature variation, 
which we take in the form 

�9 (t) = O0 to (t), ~ (0 = ~Fo o (t), (5.9) 

where 

Substituting (5.4), (5.8), and (5.9) into Koiter's equation (2.1) 
(replacing the inequality sign by the equals sign) we obtain, after 
some calculations, 

Here 

~(~ § r I § ~* = 2 1AT (5.1t) 
2 ~ " 

Ea ~o, $0--  Ea Vo, [ ,  = z* 
~o = ( t  - v)  0-------~ ( !  - v)  o8 ~ " 

We now introduce the plane of variables ~0r The straight 
line (5.11) defines on this plane a certain triangular region OMN of 
shakedown loads (Fig. 2). Since the solution (5.11) is an upper 
bound, the values of the parameters ~* and r must be selected so as 
to give the lowest position of this boundary. Keeping the constraints 
(5.7) in mind, we obtain 

~* = t, "~ = V2T. (5.12) 

Here condition (5.11)takes the form ~0 + *0 ~ 2 (straight line 
AB in Fig. 2). 

6. In order to assess the accuracy of the solution obtained we 
will determine from Melan's theorem the lower bound of the adaptive 
load. For this purpose we must determine the stationary field of re- 
sidual stresses which, when superposed on the thermoelastic solution, 
would result in purely elastic behavior. 
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Fig. 3 

The thermoelastic solution has the form 

Using the fact that stresses (6.1) are self-equilibrated, we take 
the residual stresses in a form similar to (6. I) 

E~ [ M +  z N; (M, N = e o n s t ) .  
p ~ ~  = p u ~  = - -  i =-~) 1/~ 

After introducing the total stresses Ox e + px ~ Oy e + pyO into the 
Mises (or Tresca) yield condition, we obtain 

On the plane r  Eq. (6.3) defines, for all possible values of 
g ( -1  <-- g -< 1), two single-parameter families of straight lines which 
pass through the points * = 0, ~ = 4-1 (Fig. 3). 

The outer lines of these families form the square abcd. The con- 
ditions (5.3) define on the plane ~ a certain rectangular region. It 
is obvious that shakedown is observed if this region is inscribed in the 
square abcd. From this condition we find 

% + ~ 0 - - 2 .  (6.4) 

The lower bound (6.4) thus obtained coincided with the upper 
bound (5.15); therefore the solution is exact. 
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